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Abstract— A portfolio selection problem is proposed under the 

assumption that financial returns follow homogenous Markovian 

chains. In this framework we describe two possible applications of 

bivariate Markov chains in portfolio selection problems. First, we 

show how to account the joint behavior of future wealth considering 

a bivariate Markov process and propose a technique to reduce the 

dimensionality of the large scale portfolio choice problem 

considering the heavy tails of the returns. Secondly, we describe the 

(volume, return) portfolio evolution with a bivariate Markov chain 

and we propose a volume-return portfolio strategy that accounts the 

investor behavior.  Finally, we perform an ex-post analysis to assess 

the  large-scale reduction technique used and the performance of a 

portfolio strategy that accounts the joint  volume-return Markovian 

behaviour. 

Keywords—portfolio selection, stable Paretian distributions, 

bivariate Markov process, reduction of dimensionality, volume return 

portfolio strategy. 

I. INTRODUCTION 

N this paper we deal with the large scale portfolio problem 

using bivariate Markov chains. First we show how to reduce 

the large scale portfolio selection problem using the 

asymptotic approximation of future wealth estimated with 

Markov chains. Secondly, we propose a volume return 

portfolio strategy and we evaluate its impact on the US stock 

market. 

Traditional financial theory is based on the assumption of 

financial returns normally distributed. Many empirical studies 

(fundamental works of Mandelbrot (1963) and Fama (1965) 

and more recently Rachev and Mittnik (2000), Rachev et al. 

(2007) and the reference therein) have rejected a normal shape 

for financial returns distribution. Several research works have 

been proposed to improve the realism of the underlying 

financial models. In this paper we assume that asset returns 

follow Markov processes and thus their evolution is 

approximated with a Markov chain as suggested in empirical 

studies (see Cox et al. (1979), Angelelli and Ortobelli (2009), 

D'Amico et al. (2010)). Moreover we distinguish two possible 
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applications in portfolio theory of bivariate Markov chains.  

In the first application, we assume that each couple of assets 

follows a bivariate Markov process so we consider their joint 

distribution with a proper Markov chain. Then, we 

approximate the future wealth taking into account their 

asymptotic approximation. Next, we use the covariation of 

stable sub Gaussian distributions (see Samorodnistky and 

Taqqu (1994)) to reduce the dimensionality of the large scale 

portfolio problem (see Angelelli et al. 2013a for further 

discussion). Finally, we propose an empirical comparison to 

show and evaluate the impact on portfolio problems of the 

reduction of preselection dimensionality technique. In this 

empirical analysis we consider all the stocks of the main US 

stock markets (NASDAQ, and NYSE) during the period of the 

crisis. 

In the second application, we approximate by a bivariate 

Markov chain the joint distribution of the portfolio of returns 

and of the portfolio of traded volume increments. Then, we 

examine a reward-risk portfolio strategy which considers the 

investor behavior with respect the volume and return 

evolution. In particular, we consider  that investors would like 

to purchase those assets whose traded volume and wealth are 

increasing while they want to reduce losses in particular when 

their traded volume is increasing. Finally, we propose an ex-

post empirical comparison to show and evaluate the impact of 

this portfolio strategy with respect to other performance 

measures used in dimensional reduction techniques. In this 

empirical analysis we consider all the most liquid stocks of the 

main US stock markets (NASDAQ, and NYSE) during the 

decade 2003-2013. 

The paper is organized as follows. In Section 2 we discuss 

how modeling return series and their asymptotic behavior. 

Section 3 introduces the technique used to manage the curse of 

dimensionality and an empirical analysis on the US stock 

market.  In Section 4 we discuss volume-return portfolio 

selection strategies  and an empirical analysis on the most 

liquid US stocks. Section 5 briefly summarizes the paper. 

II. RETURNS DYNAMICS MODEL 

In this section we introduce and discuss the returns 

dynamics modeling by Markov chains. Then, we analyze 

some possible consequences of that model. In particular, we 

show how to determine the distributions of the future wealth, 

and of a couple of portfolios that follow a bivariate Markov 
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process. Finally, we discuss how to take into account the 

asymptotic behavior of the future wealth process.  

A. Bivariate Markov processes 

Bivariate processes are used for different objectives in 

portfolio theory. Typically they are used either to evaluate the 

association between different financial factors or to reduce the 

dimensionality of large scale problems (see Iaquinta et al. 

(2010, 2011) and Angelelli et al. (2011)). In this work we use 

bivariate Markov processes to value the joint behavior, either, 

of the wealth and the traded volume of a given portfolio, or, of 

the future wealth obtained by two different portfolios of 

returns. Here we analyze how to approximate the joint 

behavior of two different portfolios by a bivariate Markov 

chain. Then, we extend this analysis to the return-volume 

portfolio framework in Section 4.  

Similarly to the univariate case (see Angelelli et al. (2013)) 

assume that an initial wealth )'1,1()',( 000  yx WWW  is 

invested at time 0t  in two portfolios of weights 

]',,[ 1 nxxx   and ]',,[ 1 myyy   of n and m risky assets 

respectively. The vectors x and y represent the percentage of 

the initial wealth (respectively xW0  and yW0 ) invested in each 

asset. Let us denote the prices of these assets at time t by 
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portfolios returns during the period ]1,[ tt  are given by the 

vector )',( 1,1,1   tytxt ZZZ  with components  
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We assume that the portfolios returns txZ ,  and tyZ ,  follow 

two homogeneous Markov processes. 

We introduce the multi-index ),( yx iii   and denote by 
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the states of the Markov chain. First we discretize the support 

of the Markov process }{ tZ . Given a set of past observations 

},,{ 0zz K  , we consider the range of the portfolios returns  
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and divide it into MN   bi-dimensional intervals 

),(),( 11   jjii bbaa , where }{ ia  and  }{ jb  are two 

decreasing sequences given by  
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The idea is to approximate the returns associated to values 

of the Markov process in ),(),( 11  
yyxx iiii bbaa  by the state 
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x zz  of the Markov chain defined by 
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the Markov chain }{ tZ  homogeneous, we denote its transition 

matrix by IjijiqQ  ,)},({ , where 
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represents the probability of observing the returns )( jz  in 1t  

being in )(iz  at time t. These probabilities are estimated by the 

maximum likelihood estimates: 
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where ij  is the number of observations that transit from )(iz  

to )( jz  and i  the number of observations in )(iz . See Sadek, 

and Limnios (2002) for the statistical properties of these 

estimators. Let us now consider the bivariate wealth process 

generated by the gross returns. 

Given wealth 1tW  at time 1t , the wealth )',( tytxt WWW   

at time t is a bivariate random variable with MN   possible 

values: 
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By denoting ),( ,, sysxs iii   the realized state of the Markov 

chain at time s, the value of tW  is given by 
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It is clear that the sequence tiii ,...,, 10  identifies uniquely 

the path followed by the bivariate wealth process up to time t. 

Thus, using formulas (1), the wealth obtained along the path 

tiii ,...,, 10  is given by 
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Notice that vectors x and y represent the percentages of the 

initial wealths. Thus, if we want to evaluate the sample path of 

the ex-post wealths, we have to recalibrate each portfolio in 

order to maintain these percentages constant over time. 

Interesting enough, describing the gross returns by a general 

bivariate Markov chain with MN   possible states implies 

that the number of possible values for tW  grows exponentially 

with the time. However, in our setting, the final wealth tW  

does not depend on the specific path followed by the process, 

but only on the sums of the indices of the states traversed by 

the Markov chain in the first t steps. As indices 
sxi ,
 and 

syi ,
can 

range in ],1[ N  and ],1[ M  respectively, we may have ‘only’  

)]1(1[)]1(1[  MtNt  values as the final wealth tW . This 

known as the recombining effect of the Markov chain on the 

wealth process tW . 

Let us denote the )]1(1[)]1(1[  MtNt  possible values 

of tW  at time t by 
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where tyx Llll  ),(  and 

)}1(11),1(11:),{(:  MtlNtlllL yxyxt . 

The possible values of tW  up to time T can be stored in T 

matrices of dimension ])1(1[])1(1[ TMTN   or in a 

mono-dimensional vector of size: 
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The wealth tW  can be represented by a three-dimensional 

Markovian tree, starting with a single node )'1,1()0),1,1(( w  and 

presenting at each time instant t the )]1(1[)]1(1[  MtNt  

nodes given by t

tl Llw ,),( . 

We are interested in the evolution of such a process }{ tW , 

which is clearly connected to the evolution of }{ tZ . Consider 

the matrix 
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where )( )(

0

i

i zZPp   is the probability that the return at 

time zero is )(iz . We assume these probabilities to be known 

from past observations. 

Even if for computing the distribution of the bivariate 

process we need more time than the univariate case, the 

computational complexity of this algorithm is still of 

polynomial order. This can be easily proved using a similar 

analysis to the one proposed by Iaquinta and Ortobelli (2006). 

B. Modeling the asymptotic behavior of the log returns 

The fact that log returns present a distribution with heavier 

tails than distributions with finite variance is documented in 

several empirical research works. The empirical investigation 

(see, among others, Rachev and Mittnik (2000) and the 

references therein) shows that 
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Our dataset satisfies the relation (3) for values 21  : 

This tail condition implies that the log returns )()( ln xx zr   

distribution admits finite mean and not finite variance and 

belongs to the domain of attraction of an α-stable law. This 

asymptotic behavior of data can be modeled assuming that for 

each portfolio Sx  the forecasted log-wealth 
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~

(
1 ),( 


T

t txT zxW  at a given future time T is in the 

domain of attraction of an )(x  stable distribution, i.e.: 
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where ]2,0()( x  is the index of stability, )(x  is the 

scale parameter, )(x  is the location parameter and )(x  is 

the skewness parameter.  McCulloch’s method (see 

McCulloch (1986)) provides an efficient technique to derive 

stable Paretian parameters estimation. In particular, this 

method requires the knowledge of 5%, 25%, 50%, 75%, 95% 

quantiles of the log wealth )(
~

xWT  for any portfolio. Optimal 

portfolio strategies that account the Markovian and asymptotic 

behavior of the final wealth can be derived by computing 

reward and risk measures with stable distributions. 

Alternatively, we can consider the asymptotic behavior of 

the future wealth, assuming that the vector of the forecasted 

log-wealths (obtained investing in each asset) is in the domain 

of attraction of a particular stable law. Typically, we can 

assume that the vector of the future log-wealths, denoted by 
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 is the log-wealth at time T obtained investing in 

the i-th asset, is α-stable sub Gaussian distributed. That is, the 

characteristic function of TW
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where ][ ijvV   is a positive definite dispersion matrix,   is 

the mean vector (when 1 ) and i is the imaginary unit. 

Since i  and 2

iiiv   are respectively the location parameter 

and the square scale parameter of the α-stable distributed i-th 

component iTW ,

~
, we can estimate the parameters iiv  and 

),,1( nii   using the McCulloch’s quantile estimator, 

fixing the skewness parameter 0  and imposing a common 

stability parameter   for all the components.  Generally, as 

stability parameter   we use either the empirical mean of the 

stability parameters of the assets (i.e.,  


n

i i
n 1

1
 ) or the 

stability parameter of the market index, if it exists. As 

remarked by Kring et al. (2008), the covariation parameter can 

be seen as the difference of square scale parameters, i.e.: 
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whose distributions can be evaluated using the bivariate 

Markovian approximation. Thus, to estimate the covariation 

parameters ijv  (with ji  ) of the stable vector we use the 

estimator 
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based on the estimates of the scale parameters of 
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III. DIMENSIONAL REDUCTION OF THE LARGE SCALE 

PORTFOLIO SELECTION PROBLEMS 

In this section we first examine the methodologies to reduce 

the dimensionality of large scale portfolio problems. Secondly, 

we propose an ex-post empirical  analysis on the preselection 

of some "optimal" assets based on proper performance 

measures. 

A dynamic portfolio selection problem can be stated in the 

following terms: 

 )(max xWf T
Sx

        (8) 

where  ),,(: PFf  is the investor’s performance 

functional, T is a defined horizon, TW  is the investor’s final 

wealth, S is a ( 1n )-dimensional simplex of the possible 

portfolios, x  is the vector of weights solution of the choice 

problem. Recall that for static problems more than one 

hundred performance measures (see Cogneau and Hübner  

(2009a-b)) have been proposed that can be easily extended to 

a dynamic framework. 

The typical functionals which are defined under the 

assumption that the gross return of each portfolio follows a 

Markov chain with N states are called OA performance 

(utility) functionals or OA performance measures (Angelelli 

and Ortobelli (2009)). OA performance measures can be used 

either to optimize the choices or to reduce the dimensionality 

of the portfolio problem. In particular we use the following 

two OA performance functionals in the next empirical 

analysis: 

OA-Sharpe ratio (OA-SR). The classic version of the 

Sharpe ratio (see Sharpe (1994)) values the expected excess 

return for unity of risk (standard deviation). With the OA-

Sharpe ratio we value the  expected excess final wealth at time 

T for unity of risk, i.e., 
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where ][ ,TijT qQ   is the variance covariance matrix of the 

final wealth obtained with each asset at time T: we consider 

the Markov joint distribution at time T of i-th and j-th assets 

and compute their covariance Tijq , . However, using Sharpe 

type measures we generally don’t take into account the 

asymptotic behavior of the wealth (except in the case the 

optimal portfolios are in the domain of attraction of the 

Gaussian law). 

OA-Stable Sharpe ratio (OA-SSR) This performance 

functional is defined as 
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where ][ ijvV   is the dispersion matrix computed with 

formula (6), )())(ln( xxWT
   is the mean of the stable 

distribution that better approximates the log final wealth 

)),(),(())(ln( ))(( xWlma
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T T
xxSxW  . As stability parameter 

  we use the empirical mean of the stability parameters of 

the assets (i.e.,  


n

i i
n 1

1
 ). As for the Sharpe ratio, this 

ratio is isotonic with the preferences of non-satiable risk 

averse investors (see Rachev et al. (2007)). Using this 

performance measure we also take into account the asymptotic 

behavior of the future wealth.  

A. The large scale portfolio dimensional problem 

From a statistical point of view the number of observations 

should increase proportionally with the number of assets (see 

Papp et al. (2005), Kondor et al. (2007)) to achieve a 

reasonable statistical approximation of the historical series. 

Thus when we have a considerable number of assets we need 

to reduce the dimensionality of the portfolio problem. In the 

empirical analysis we adopt two methodologies to reduce the 

dimensionality of the large scale portfolio problems: 

1. Preselection of an asset universe subset relevant 

for some optimality criteria; 

2. Approximation of the relevant assets dynamics by 

some representative common factors. 

The following paragraphs describe these methodologies in 

some details. 

1) Preselection 

Preselection methodology have been proposed and analyzed 

by Ortobelli et al. (2010, 2011). This methodology is 

performed to identify some relevant assets involved in the 

portfolio choice. In our dataset the choice is among more than 

1500 US stocks. We suggest to preselect no more than 170 

assets following two steps: 

Step 1: Order the assets with the two performance measures 

(9) and (10). 

Step 2: Select the "best" 170 assets satisfying the same 

common criteria (one group of 170 assets obtained by the 

intersection of the ordered groups of assets). 

Once we get the optimal preselected assets we could 

suggest either to invest in them uniformly (i.e., investing in 

each asset the same percentage of wealth 1/170) or to further 

reduce their randomness approximating the series with some 

factors obtained, for example, with a principal component 

analysis.  

2) Common factors approximation 

 Generally, we use a principal component analysis (PCA) to 

identify some common factors to approximate the asset returns 

(see Ross (1978)). The portfolio selection problem 

dimensionality is reduced by applying a non-Gaussian factor 

analysis that accounts for the joint Markov evolution of 

returns and their asymptotic behavior. First we perform a PCA 

of the preselected gross returns of the stocks to identify the 

few factors (portfolios) with the highest return variability. 

Therefore, we replace the original n correlated time series 

niiz ,,1}{   with n uncorrelated time series njjR ,,1}{   

assuming that each }{ iz  is a linear combination of the series 

njjR ,,1}{  . Then we implement a dimensionality reduction by 

choosing only those factors whose variability is significantly 

different from zero. We call portfolio factors ),,1( sjf j   

the s time series in njjR ,,1}{   with a significant dispersion 

measure, while the remaining sn  series with very small 

dispersion measure are summarized by an error. Thus, each 

series iz  is a linear combination of the factors plus a small 

uncorrelated noise: 
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j
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   (11) 

 

When the series don't present heavy tails the PCA could be 

applied to the Pearson correlation matrix of wealths obtained 

by the single gross returns. However, simple tests on these 

historical series reject the normality assumption and show that 

the historical series present very heavy tails. Thus, in order to 

consider the asymptotic behavior of the historical series we 

apply the PCA to the linear correlation matrix ][
~

, jiV   

(where 

jjii

ij

ji

vv

v
, ) obtained by the dispersion matrix 

][ ijvV   of the stable sub-Gaussian hypothesis, that we call 

sub-Gaussian correlation matrix. We can consider the matrix 

based only on the historical series of log-returns or the 

correlation matrix computed on the forecasted log-wealths 

obtained investing in each asset. Observe that to compute the 

forecasted correlation matrix we have to use the bivariate 

Markov process. Once identified the s factors  that account for 

most of variability of the historical gross returns, and other w 

factors ),,1(
~

wjf j   that account for most of variability of 

the forecasted wealths we further reduce the variability of the 

error by regressing the series on the factors jf  and jf
~

 so that 

we get: 
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Moreover, since the series present heavy tails we use the 

median regression on the factors to approximate the returns. 

Clearly, once we reduce the randomness of the large scale 

problem, we can use the preselected approximated returns to 

optimize portfolio selection strategies.  

 

B. Portfolio preselection in practice 

In this section, we evaluate the impact of the proposed 
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model on the US stock market. In particular, we consider the 

stocks traded on the NYSE and on the NASDAQ. Since we 

want to propose as much as possible a realistic empirical 

analysis, we have developed a dynamic dataset that uses all 

the useful financial data from DataStream. 

Using this dynamic dataset we propose two different ex-

post comparisons during a period of about two years (500 

daily observations) from 15-Sep-2008 till 31-Aug-2010 . In all 

the empirical analyses we assume: 

a) that investors have a temporal horizon of T=20 working 

days (thus, for each portfolio strategy we should optimize the 

portfolio every 20 working days for a total of 25 

optimizations); 

b) Markov chains have N=9 states; 

c) the initial wealth 0W  is equal to 1 at the date 15-Sep-

2008. 

The first comparison applies the portfolio selection to the 

approximated preselected returns using all the active assets 

and the daily observations during the previous ten years (2600 

trading days). Thus, with this analysis we use 3100 daily 

observations overall from 14-May-1998 till 31-Aug-2010. The 

second comparison applies the portfolio selection to the 

approximated preselected returns using all the active assets 

and the daily observations during the previous six months (125 

working days). Thus with this analysis we use 625 daily 

observations overall from 17-Mar-2008 till 31-Aug-2010. For 

both comparisons we value the empirical evidence from the 

preselected assets. 

 

1) Empirical evidence from the preselected assets 

In order to understand if preselection gives some benefits 

we compare the ex-post wealth of two portfolio strategies with 

the behavior of two market indexes: NASDAQ Composite and 

NYSE Composite. In the first strategy the investor uses a 

completely diversified portfolio on all active assets either in 

the last six months or in the last ten years (i.e., he/she invests 

1/n in each asset where n  is the number of available assets at 

the optimization date). With the second strategy the investor 

uses a completely diversified portfolio only on the preselected 

assets. For both strategies the investors recalibrate the 

portfolio every month (every 20 working days). 

Figure 1 reports the sample paths of the ex-post wealth of 

the two strategies and of the market indexes when we consider 

all active assets either in the last six months, or in the last ten 

years. The difference between the strategies based on 

preselected assets among all those active either in the last ten 

years or in the last six months suggests that: 

1) the set of the preselected assets is completely different in 

the two cases; 

2) preselection works better if it is applied to more assets 

(as in the case of all assets active during the last six months); 

3) the recent entries in the market could have an important 

impact in the portfolio choices. 

Moreover, considering the limited transaction costs we 

obtain when we use preselection, we also deduce that it makes 

sense considering a preselected number of assets. 

 

 

IV. VOLUME-RETURN PORTFOLIO STRATEGIES 

 

In this section, we evaluate the impact of the proposed 

bivariate Markov chain model applied to the volume-return 

process on the most liquid US stocks. In particular, we 

consider the stocks traded on the NYSE and on the NASDAQ 

from 01-Jul-2002 till 01-Jul-2013. Since we want to propose 

as much as possible a realistic empirical analysis, we have 

developed a dynamic dataset adopting the same filters adopted 

by  Angelelli et al. (2013). In particular, the dataset uses all the 

stocks (from DataStream) which, at each recalibration time, 

are active during the last six months (125 trading days). 

Moreover, to limit the liquidity risk we use only the stocks 

whose daily value of volume traded overcome in average the 

50 million of USD, where the value of volume traded of i-th 

asset at time t is given by: 

titit VPassetthioftradedvolumeofValue ,,       (12) 

where tiP , and tiV ,  are respectively the closure price and 

volume traded of i-th asset at time t. 

Doing so, every month (at each recalibration time) we 

preselect always more than 500 assets in the US stock market 

which do not present liquidity risk. Since the number of these 

stocks is still too large, we need to reduce the dimensionality 

of the large scale portfolio problem. Thus, we preselect the  

first 100 assets with the greatest values of the performance 

measures (9) and (10) and, then, we approximate the 

preselected returns regressing the historical series on few 

factors obtained applying a proper PCA. In particular, at each 

recalibration time we consider 14 factors: 7 obtained with the 

PCA applied to the forecasted sub-Gaussian correlation matrix 

and the other 7 obtained with the PCA applied to the 

forecasted Pearson correlation matrix of the historical series. 

 

A. A volume-return performance measure  

We assume that the gross returns kxVol , of the traded volume 

of a portfolio x evolves exactly as for the wealth in the 

Markovian case studied in Section II. So we start by an initial 

volume equal to 1 and we assume that the portfolio of volume 

 
Fig.1: Comparison of the ex-post wealth among the indexes 

NYSE Composite, NASDAQ Composite and all the equally 

diversified portfolios among: preselected assets and all 

active assets either during the last 10 years or during the last 

6 months. 
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Doing so we obtain that the joint probability follows formula 

(2) and the wealth-volume process at time t in the node 

tVolx Llll
x
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where )}1(11),1(11:),{(:  NtlNtlllL
xx VolxVolxt  . 

In this section we consider a reward risk analysis that account 

of the joint return-volume evolution, but first we have to 

define some measures of reward and risk according to the 

investor behavior. 

Considering that investors want to maximize the future wealth 

of the portfolio in particular when the volume traded is 

increasing we can assume as reward measure at time t the 

value 

))(;)(|)(( 21 sxVolsxWxWE ttt  . 

for some benchmarks (s1,s2). In the following empirical 

analysis we assume (s1,s2) the maximum values (for a given 

xl )   (s1,s2)= ),(
),(),( tl

x
tl

x
xx Volw  such that 

03.0))(;)(Pr(
),(),(
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tl
xt

tl
xt

xx VolxVolwxW         (13) 

Considering that investors want to minimize the future losses 

of the portfolio in particular when the volume traded is 

increasing we can assume as risk measure at time t the value 

  21 )(;)(|)()(1 sxVolsxWxVolxWE tttt  . 

for some benchmarks (s1,s2). In the following empirical 

analysis we assume (s1,s2) the first values (for increasing 

values of xl )  (s1,s2)= ),(
),(),)1(1( tl

x
tlNt

x
xx Volw


 such that 
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Therefore in the next section we use and apply the following 

reward-risk performance measure. 

OA-ReturnVolume ratio (OA-RVR) This performance 

functional is defined as 
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where s1,t and s2,t are defined by formula (13), while m1,t and 

m2,t are defined by formula (14) .   

 

B. An empirical comparison  

 

In our empirical analysis we use a dataset of more than ten 

years from 01-Jan-2003 till 01-July-2013, and assume the 

following settings:  

a) that investors have a temporal horizon of 20T  trading 

days (thus, for each portfolio strategy we should optimize 

the portfolio every 20 trading days for a total of 135 

optimizations);  

b) that investors cannot invest more than 70% in a single 

asset (i.e.: ]7.0,0[ix );  

c) Markov chains have 5N  states;  

d) the initial wealth 0W  is equal to 1 at the date 01-Jan-

2003; 

e) we consider 5 basis points of proportional transaction 

costs, applied at each recalibration time. 

We perform a comparisons to evaluate the impact of return-

volume approximation by comparing the ex-post performance 

of different portfolio strategies based on: the OA-Sharpe ratio 

(9), the OA-Stable Sharpe ratio (10), the OA-ReturnVolume 

ratio (15).  

For each strategy, we have to compute the optimal portfolio 

composition 135 times and at the k-th optimization 

( )135,,2,1,0( k ), three main steps are performed to 

compute the ex-post final wealth:  

Step 1 Preselect 100 assets among all those liquid and active 

in the last six months and then approximate these returns 

regressing them on few factors obtained by a PCA to reduce 

the randomness of the problem. 

Step 2 Determine the market portfolio )(k

Mx  that maximizes 

the performance ratio ))(( xW  associated to the strategy, i.e. 

the "ideal" solution of the following optimization problem:  
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Angelelli and Ortobelli (2009) have observed that the 

complexity of the portfolio problem is much higher in view of 

a Markovian evolution of the wealth process. In order to 

overcome this limit we use the Angelelli and Ortobelli's 

heuristic algorithm that could be applied to any complex 

portfolio selection problem that admit more local optima.  

Step 3 Differently by Angelelli et al. (2013) we do not 

recalibrate daily the portfolio maintaining the percentages 

invested in each asset equal to those of the market portfolio 
)(kx  during the period ],[ 1kk tt  ( where Ttt kk 1 ). Thus, 

the ex-post final wealth is given by:  

  )(
)1(

)( )'(..
1

postex
t

k
Mttt

kkkk
zxctWW




       (16) 

 where 
kt

ct .. are the proportional transaction costs we get 

changing the portfolio, 
)(

)( 1

postex
tk

z


 is the vector of observed 

gross returns between kt  and 1kt . 

Steps 1, 2, and 3 are repeated for all performance ratios until 

some observations are available.  
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Fig.1: Ex-post comparison of OA-Sharpe ratio, OA-Stable Sharpe 

ratio, OA ReturnsVolume ratio applied to the preselected assets 

among all the active stocks in the last 6 months. 

 

The output of this analysis is given in Figure 2 where the 

results of all strategies applied to the preselected assets among 

all the active assets in the last six months are reported. 

The results obtained from the return-volume strategy (applied 

to the preselected liquid stocks) present very good results 

considering the transaction costs and the period of global 

crisis. In particular, the OA-return-volume ratio (best strategy) 

gives more than the 18% for year. We also observe that the 

OA-Stable Sharpe strategy presents the lowest level of risk 

with few small jumps and an almost linear behaviour. In 

addition, the OA-Stable Sharpe and the OA-return-volume 

strategies present higher final wealth than the OA-Sharpe 

strategy.  

The portfolio composition generally changes a lot during the 

ex-post period. This is confirmed from Figure 3 that describes 

the portfolio turnover and its diversification. In particular, it 

examines how the portfolio composition of the OA-return-

volume strategy changes during the ex-post period. In the first 

sub-figure (Fig. 3(a)) we have the percentages invested in each 

assets at each computation of the optimal portfolio.  

The second sub-figure (Fig. 3(b)) points out the percentages 

k
 (k=1,...,25) of the portfolio changed every 20 days 

obtained by the formula: 
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In particular k  should belong to the interval [0,2], where the 

value 0 means that the portfolio composition is not changed 

during the period [tk-1,tk], while the value 2 corresponds to the 

case we sell the portfolio and we buy a completely different 

portfolio. The last sub-figure (Fig. 3(c)) points out the number 

of:  

(1) the quantity of assets used (i.e. those assets whose 

percentages are greater than zero )(
,

k
iMx >0, i=1,...,n);  

(2) the quantity of entering assets;  

(3) the quantity of exiting assets.  

 

Figure 3b shows a strong turnover in the portfolio composition 

since we often observe a value near to 2 of function  k
. 

Since the portfolio change a lot we pay high transaction costs 

every 20 days. Moreover, the portfolio is not very well 

diversified among all preselected assets because there are 

always some assets in which the strategy suggests (see Figure 

3a) to invest the maximum possible (i.e. 70%). In addition, 

from Figure 3c  we deduce that in all examined period there 

are no more than 25 assets (among the 100 preselected) with 

positive weight in the current portfolio.  

 

 
Fig. 3: Portfolio composition and portfolio variations of the OA-

ReturnVolume strategy applied to preselected assets among all the 

active in the last 6 months. 

 

V. CONCLUDING REMARKS 

The proposed analysis emphasize the importance to use 

bivariate Markov chains either to reduce the dimensionality of  

large scale portfolio problems or to consider the joint behavior 

between the returns and the traded volume. 

First we deduce that the preselection could play a crucial 

rule in portfolio selection, since in all cases we get more 

wealth than the indexes. This appears much more evident 

when we compare the final wealth of preselection portfolio 

strategies with uniform type strategies (strategies where the 

wealth is invested uniformly among all assets). Moreover, the 

preselection analysis also suggests that new firms entered in 

the market could have a strong impact in the portfolio 

selection. 

Secondly, we observe that also the traded volume could 

play a crucial rule in portfolio selection strategies. In this 

framework we propose a new performance measure that is 

able to account properly the investor's return and volume 

preferences. This empirical analysis shows that it makes sense 
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to account the joint distribution of the returns and of the 

volume. 
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